Home automation uses electronic boxes of smaller and smaller size. In microelectronics, the chip size performance ratio is changing less rapidly than is required in the industry. To meet this need, the process involves stacking identical chips using short vertical interconnects to connect them together. These developments impose on the actors a permanent effort of R & D: improvements on the packaging (interlocking in a reduced volume) of the electronic systems are to be brought in particular thanks to the use of new technologies of interconnections because the materials used at the moment undergo thermal stresses. -mécaniques. The use of materials such as carbon nanotubes (CNTs) as a connector would allow the physical limits of technology to be overcome. The industrial interest is multiple according to the electrical, thermal and mechanical advantages of the CNTs to replace micro-interconnections. In this study, it is a question of testing these new materials in conditions close to a use for power conversion and micro-sources of energy. Two regional laboratories (GREMI & LMR) combine their complementary skills in partnership with STMicroelectronics to evaluate the potential of CNTs. GREMI has developed a plasma process to produce NTC mats and a test bench for their electrical and thermal properties in a previous Nanotherm project. The MRL is working on the mechanical tests of interconnections in microelectronics.

Project benefits

Publication scientifique : 1

Rapport final : 3

Publication scientifique : 65

Emplois crées : 6

Thèse : 3

Nouveau projet : 3

People involved in the project

Project leader

Member partner

Information of the project

Start of the project on01 / 01 / 2013 | End of project on01 / 01 / 2016

Strategic business lines

Bâtiments intelligents

Matériaux et composants pour l'électronique

Referent of the project

Chargé de projets innovants

07 86 53 38 74

Centre-Val de Loire